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How Accurate Can a Force Field Become? A Polarizable Multipole Model Combined with
Fragment-wise Quantum-Mechanical Calculations
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A new method to accurately estimate the interaction energy between a large molecule and a smaller ligand
is presented. The method approximates the electrostatic and induction contributions classically by multipole
and polarizability expansions, but uses explicit quantum-mechanical fragment calculations for the remaining
(nonclassical) contributions, mainly dispersion and exchange repulsion. Thus, it represents a limit of how
accurate a force field can ever become for interaction energies if pairwise additivity of the nonclassical term
is assumed (e.g., all general-purpose force fields). The accuracy is tested by considering protein—ligand model
systems for which the true MP2/6-31G* interaction energies can be computed. The method is shown to be
more accurate than related fragmentation approaches. The remaining error (2—5 and ~10 kJ/mol for neutral
and charged ligands, respectively) can be decreased by including the polarizing effect from surrounding
fragments in the quantum-mechanical calculations.

1. Introduction

In many applications of theoretical methods in chemistry, one
is interested in changes in the potential energy. Although there
are many empirical potentials developed for specific types of
systems, only quantum-mechanical (QM) methods are generally
applicable. By these methods, one can in principle attain any
accuracy by using a sufficiently large basis set and including
electron correlation in a rigorous way. In practice, however,
the applicability of the most accurate methods is limited by
computational resources. Therefore, there is a need for general
potential energy methods with low and predictable error as
compared to the exact QM treatment, but still applicable to large
molecular systems.

One solution to this problem is to decompose the system into
smaller subsystems, fragments that are treated more or less
independently. Such fragmentation approaches to QM calcula-
tions have a long history,' > but they have experienced a strong
revival in the past decade. Most such methods estimate the
desired property (e.g., total energy, interaction energy, or
electron density) by the formally exact expansion into monomer
contributions, two-body contributions, three-body contributions,
etc., up to n-body contributions, where n is the number of
fragments. For the method to give a significant computational
advantage over the supermolecular calculation of the whole
system, the series has to be truncated already after the two- or
three-body term. Besides the choice of how to truncate the series,
the various methods differ mainly in the treatment of fragmenta-
tion across covalent bonds, the selection of subsystems, and
the use of embedding to capture some of the many-body effects
that are lost in the truncation.

For the fragmentation, several schemes have been developed.
The fragment molecular orbital (FMO) method® defines a set
of nonoverlapping fragments and assigns a number of electrons
to each fragment, using local molecular orbitals. A simpler
approach is to assign a number of nuclei to each fragment and
handle empty valencies by capping with hydrogen atoms or other
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functional groups. By necessity, the fragments will then overlap.
However, on the basis of the approximate atomwise additivity
of interaction energies,” methods for handling the overlaps by
adding and subtracting fragment energies have been proposed.®™!
The latter model, called molecular fractionation with conjugate
caps (MFCC), has later been used with various capping groups,
and more sophisticated and automatic procedures for the
fractionation have been developed.!?”'* There are also related
methods limited to noncovalently bonded clusters, in which the
fragmentation is trivial.'>~'8

The selection of subsystems (i.e., the specific supermolecular
calculations performed) depends on the quantity to be computed.
The FMO method, which exists as a two-body (FMO2) or a
three-body expansion (FMO3)," computes the total energy and
thus requires calculation of all fragment pairs. The MFCC
method, on the other hand, is primarily designed for interaction
energies with fixed monomer geometries, and thus only fragment
pairs belonging to different monomers are computed. The
method has also been adapted to calculation of total energies.?
More elaborate ways of selecting subsystems have been used
for clusters,'® as well as for covalently bonded fragments.'*

For the embedding, there have also been many proposals. In
FMO, each monomer and dimer experiences the exact electric
potential from all other fragments in the system. This requires
the computation of two-electron repulsion integrals between the
fragments, but it has been shown that outside a certain distance,
the potential may be approximated by Mulliken charges without
loss of accuracy.?! A simpler alternative to FMO is the binary
interaction method'>?* (or ternary interaction, in analogy to
FMO3), in which the potential is approximated by the potential
from fragment-centered dipoles or atom-centered electrostatic
potential (ESP) charges, giving special attention to the basis-
set superposition error (BSSE). In the original MFCC method,
there is no embedding; the total interaction energy is simply a
sum of pairwise interaction energies. For calculating the total
energy by MFCC, embedding using unit charges, Mulliken
charges, ESP charges, or natural population analysis (NPA)
charges has been used.!+?*
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Figure 1. Example illustrating the MFCC procedure for cutting molecule A across the peptide bond and capping with —COCH;3 and —NHCH;
groups. The result is two capped fragments A; and A, with ¢; = 1, as well as a concap fragment A; with ¢; = —1.

In principle, all of these methods are applicable to any level
of theory, although most work has been done using Hartree—Fock
theory (HF), density functional theory (DFT), or second-order
Mpgller—Plesset perturbation theory (MP2). A fragmentation
method may also be combined with a full-system calculation
at a lower level of theory (hybrid approach), for example, the
MP2—HF** or CCSD(T)—MP2!® combinations.

A consistent series of methods was recently tested by Truhlar
et al.!”?* for water clusters. These include the pairwise additive
(PA) approximation, which can be seen as a particular case of
MFCC with no covalent bonds between fragments; the elec-
trostatically embedded pairwise additive (EE-PA) approxima-
tion, which is similar to FMO2 except for the use of an
approximate potential (generated by Mulliken charges) at all
distances; and the MP2—HF hybrid versions of these methods
(denoted by a CE extension for correlation energy). We will in
the following adopt this notation and reserve the term MFCC
for the actual fragmentation procedure.

An alternative to the fragmentation approach is to decompose
the energy into terms with different physical meaning. If we
limit ourselves to noncovalent interactions, the most common
description defines four such terms: electrostatic energy, induc-
tion energy, dispersion energy, and repulsion energy.? The first
two terms are usually called classical terms, whereas the latter
two are nonclassical terms, stemming from the quantum-
mechanical nature of the interaction. The decomposition is
ambiguous, and several schemes have been devised.

Apart from permitting the direct evaluation of each term
separately,”®?” such physical decomposition of the interaction
energy is the foundation of molecular mechanics force fields,
in which each term is estimated by a relatively simple expres-
sion. Normally, the parameters in the classical terms (e.g., atomic
charges and polarizabilities), as well as those in the nonclassical
terms (e.g., Lennard-Jones parameters), are part of the force
field itself. They are usually obtained by a major parametrization
involving systems of the type for which the force field is
designed.

There are also several examples of methodologies in which
only the nonclassical parameters are predefined, whereas the
classical parameters are obtained for each considered system,
typically by performing QM calculations and analyzing the
obtained electron density.?® Although very appealing in theory,
the accuracy of this approach is limited by the transferability
of the nonclassical parameters, which are normally fitted to
reproduce supermolecular energies. Fitting of the exchange
repulsion is a difficult problem, which has been addressed in
many studies.?® 32 The transferability is improved if the overlap
of the wave functions (or densities) is explicitly taken into
account.’>”3 By this approach, good results may be obtained
without fitted parameters®® or with a small number of element-
independent parameters.*” The dispersion energy has also been
subject to many studies*®* with the aim to avoid parameter
fitting as much as possible. Any fitting to supermolecular QM
calculations or experimental data will include model errors in

the classical terms (e.g., in the multipole approximation). This
will necessarily introduce unphysical effects into the parameters
and restrict their transferability.

To avoid the transferability problem and address the accuracy
of the actual physical decomposition, we will go one step further
in this study and estimate the nonclassical terms by supermo-
lecular QM calculations, although for smaller subsystems. The
advantage of this is 2-fold: No fitted parameters are needed,
and the accuracy is expected to be improved. In fact, the pair-
potentials are by definition exact (within the given QM
methodology applied), so the only approximation in the method
is the assumption of pairwise additivity of the nonclassical term.
We call the method polarizable multipole interaction with
supermolecular pairs (PMISP) to highlight that it is based on a
classical (polarizable multipole) interaction model, but enhanced
with supermolecular dimer energies.

At the same time, the PMISP method is directly related to
the fragmentation methods. It uses a two-body expansion and
the MFCC procedure for handling covalently bonded fragments.
The use of a polarizable multipole description of the whole
system replaces the need of embedding the QM calculations in
an electrostatic field; both approaches capture the most important
many-body effects. PMISP may in fact be seen as a hybrid
fragmentation method, using a polarizable multipole description
as the lower level of theory and any QM method as the higher
level.

2. Methods

2.1. The PMISP Method. We consider the interaction
between a large molecule A (typically a model of a protein
binding site) and a small molecule B, in vacuum. These two
molecules will be denoted monomers. The geometries of the
isolated monomers are kept fixed as the dimer is formed, a
common approximation in ligand-binding calculations.*’ For a
given (necessarily size-extensive) method and basis set, the QM
(supermolecular) interaction energy between A and B, corrected
for basis set superposition error (BSSE) by the counterpoise
procedure, is defined by

Ey=Eg=Eyp— Eyim)y~ Epra) (1)

where Ex(y), denotes the energy of monomer X in the dimer
basis set. Note that, throughout this study, we adopt the notation
Exy to mean the interaction energy between X and Y, that is,
not the total energy.

In the PMISP method, E. is estimated by the following
expression:

B = B+ E @

where E°° and E™ are the electrostatic and induction energies,
respectively, when both monomers are treated classically, using
multipoles and polarizabilities, and E™ is a nonclassical term,
mainly containing the dispersion and exchange-repulsion ener-
gies, but also corrections to the classical terms (e.g., charge
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penetration), as well as various coupling terms and corrections
for the artificial division of the system into monomers (usually
denoted charge transfer).

Unlike in standard molecular-mechanics force fields, E™ is
not estimated by an expression with fitted parameters. Instead,
it is obtained by splitting A into fragments A;, Ao, ..., A, and
evaluating the contribution to the nonclassical term from each
fragment separately, assuming pairwise additivity. In this work,
we employ the MFCC fragmentation procedure,” which is a
well-defined and general way to treat fragmentation over
covalent bonds. In this method, the fragments are capped with
chemically suitable functional groups. Moreover, the capping
groups on each side of a bond that is cut are joined to form a
concap fragment. An example is shown in Figure 1. The key
feature of this procedure is that by adding the sets of atoms in
the normal fragments and subtracting the sets of atoms in the
concap fragments, one recovers the molecule A, and this
additivity is expected to hold approximately for certain proper-
ties and energies. Thus, we define E™ by

Expy=7) ¢(Eyxh—Exs — Eap) 3)
=1

where ¢; is equal to 1 for a normal fragment and —1 for a concap
fragment.

The electrostatic and induction energies are calculated by
representing each molecule as a collection of multipoles and
anisotropic dipole polarizabilities, located at each nuclear
position and each covalent bond midpoint. These properties are
computed at any QM level by the LoProp method.*! The
multipole expansion is truncated after quadrupoles. The elec-
trostatic interaction includes all possible terms formed by the
multipoles, that is, up to and including quadrupole—quadrupole
interactions. The accuracy of the LoProp method has been tested
before.*? Including octupoles in the multipole expansion changes
the total energies in this study by less than 1 kJ/mol.

In the same spirit as for the calculation of the nonclassical
term, the properties of monomer A may be computed fragment-
wise to reduce the computational time. To do this, we again
apply the MFCC procedure (in terms of electron densities)*
and estimate the properties of A as

n

Pr=Y cPy “

i=1

where P} is a multipole moment or polarizability located at
center k (which may be either a nucleus or a bond midpoint),
obtained by a QM calculation of fragment A; (or zero if center
k is not within A;). The properties of capping hydrogen atoms
are almost perfectly canceled between caps and concaps; the
remaining part is moved to the corresponding real atom.
Alternative methods for assembling multipoles have been
discussed previously.**

2.2. Intramolecular Polarization. The use of a polarizability
model is particularly approximate for treating interactions within
a covalently bonded molecule (intramolecular polarization). To
avoid polarization catastrophes and obtain a physical behavior
of the model, a polarizable force field normally includes a rule
for which interactions are neglected or damped (typically
between close-lying centers). If one aims at a high accuracy,
special care is required when devising this rule. Thus, in our
method, the following rule is applied: Polarization is included
between all centers, except those pairs of centers that have been
in the same fragment in at least one LoProp calculation.
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To motivate this rule, we distinguish between polarization
due to static multipoles (static polarization) and polarization due
to other induced dipoles (polarizability coupling). For the static
polarization, the rule can be rigorously justified. First, we note
that no matter how the fragments are chosen, each center k
belongs to an odd number n; of fragments, or specifically to
one more normal fragment than concap fragment. The case with
ny = 1 is trivial: The polarizability o, should not respond to
multipoles in the same fragment, because these have already
influenced the static multipole at k through the self-consistent
quantum-chemical treatment. For n;, = 3, the multipole at & has,
through the sum over three fragments, been effectively influ-
enced by the union of the two fragments (with the concap
fragment removing double-counting), and thus o, should not
respond to multipoles in any of these fragments. The same
argument can be used for higher values of ny, thus giving the
simple rule stated above, which can be automatically applied
in the calculations. A similar discussion in the context of flexible
molecules can be found in ref 45.

For the polarizability coupling, the justification is more
qualitative. In principle, a given polarizability o, should not
respond to induced dipoles in the same fragment, because the
magnitude of oy is derived assuming that the whole fragment
is polarized simultaneously. One may consider it as an “implicit
coupling” manifested through the numerical values of the
distributed polarizabilities. Including the coupling explicitly (i.e.,
letting oy respond to the field from the other induced dipoles
when using the model) would mean that the total polarizability
of the fragment would be higher than that obtained in the
quantum-chemical calculation. For n; > 1, an argument similar
to that above can be applied, resulting in the same rule as for
the static polarization. However, the polarizabilities in the
LoProp approach are derived using homogeneous electric fields.
Therefore, the implicit coupling is strictly correct only if the
field is homogeneous (so that the other polarizabilities respond
to the same field), but approximate when the field is inhomo-
geneous. This approximation was recently found to be accurate
for small and medium-sized molecules.*® The present study will
provide a test for larger molecules.

2.3. Systems. For testing the method, we use a model of the
avidin protein interacting with the seven ligands (biotin
analogues) shown in Figure 2. This system (with the full protein)
has previously been subject to several studies.*’ >° For each
ligand, we obtain geometries from snapshots of a simulation of
the protein—ligand complex in explicit water, using the Amber
1994 force field.’! The exact simulation protocol has been
described elsewhere.”® To draw statistically valid conclusions,
the first 10 snapshots (separated by 10 ps simulation time) are
used for BTNI1. This set of 10 geometries will be called the
geometry set. Some calculations are performed only for the first
snapshot of BTN1. This will be called the main structure. For
the remaining ligands, only the first snapshot is used. The first
snapshot of each of the seven ligands will be called the ligand
set.

The model of the avidin active site (denoted as monomer A)
consists of 216 atoms and is shown schematically in Figure 3.
The residue numbering refers to PDB structure 1AVD,>? and
the whole model belongs to the same subunit (labeled B in the
original structure), except for Trp-110, which belongs to a
neighboring subunit. Note that the model is not a single
covalently bonded molecule, but rather a collection of 15
separate molecules of different sizes, labeled by A, A,, ..., Ajs.
This is a consequence of the way that the model was constructed,
by including all atoms within 4 A of the ligand (using the
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Figure 2. The seven ligands to avidin used in this study: (a) BTN1
(biotin), (b) BTN2, (¢) BTN3, (d) BTN4, (e) BTNS5, (f) BTN6, (g)
BTN7. The first three have a molecular charge of —1, whereas the
other ligands are neutral when bound to the protein.

coordinates of the main structure) and a minimal set of additional
atoms necessary to complete chemically reasonable groups such
as aromatic rings. Bonds that were cut during this process were
capped with hydrogen atoms. As can be seen in Figure 3, all
molecules are rather small, except for As, which is a chain of
six amino acids. This irregular distribution of molecule sizes is
unintentional, but happens to be advantageous for some of the
tests performed.

The fragmentation of monomer A is done in three different
ways (cutting schemes): (a) The whole model A is treated as
one fragment. (b) Each of the 15 molecules in A is treated as
one fragment. (c) The largest molecule As is further divided
into 6 capped fragments and 5 concap fragments.

The cuts are done through the peptide bonds, as indicated in
Figure 3, and each fragment is capped with —COCH; and
—NHCH; groups at the N and C termini, respectively.

Note that the word fragmentation is used in a wide sense for
splitting the whole monomer A into smaller pieces, no matter
whether the pieces are covalently bonded or not (covalent bonds
are only cut in scheme c). The cutting schemes apply to both
the computation of properties and the nonclassical term, although
scheme a makes no sense for the nonclassical term (it would
require the quantity Exg that we are trying to approximate). In
practice, scheme c is the only computationally feasible option
for calculating the nonclassical term at a reasonably high level
of theory. For a full protein, it corresponds to letting each amino
acid residue constitute one fragment. Although there are
advantages of using the same cutting scheme for the nonclassical
term as for the properties, we also investigate other possibilities.

2.4. Separating Electrostatic and Induction Energies.
When comparing electrostatic and induction contributions to
interaction energies between various polarizable force fields (or
cutting schemes), a technical issue arises concerning the
definition of each term. The most natural definition of electro-
static energy is the static interaction between the monomers,
each having been internally prepolarized before the interaction
starts. The induction energy is then the energy change (always
negative) caused by the polarization of A by B, and vice versa.
This definition is illustrated in the upper row of Figure 4, where
the dashed line in state 1 indicates that the interaction is turned
off, the random arrows inside the monomers in states 1 and 2

Soderhjelm and Ryde

indicate that the monomers are internally prepolarized, and the
bigger arrows in state 3 indicate that the whole dimer is self-
consistently polarized.

However, a more direct definition simply distinguishes
between the interaction involving only multipoles (i.e., obtained
by turning off the polarizabilities) and the rest of the energy
(caused by the polarizabilities). These are the quantities obtained
directly from a standard molecular-mechanics program, and we
denote them multipole energy (E™!) and polarizability energy
(EPY). The definition is illustrated in the lower part of Figure 4,
where the absence of arrows in states 4 and 5 indicates that the
monomers are not prepolarized. If we make the logical definition

pol __ ppol __ ypol __ p-pol
EAB_ total EA EB %)

then it is evident from Figure 4 that
B+ = ER o+ ©

although, in general, the equality does not hold termwise. Thus,
as long as the total result is concerned, it does not matter which
pair of quantities we use. However, to be able to compare
individual terms from various methods, it is essential to use
the natural definition. In practice, one can obtain E%§ by
performing a separate calculation of each monomer, saving the
induced dipoles, and treating these as static dipoles in the
subsequent dimer calculation, taking care not to double-count
the internal polarization.

In Table 1, we report numerical values for the quantities
depicted in Figure 4 for the main structure using each of the
three cutting schemes and HF properties. The difference between
the natural electrostatic energy (E°) and the direct multipole
energy (E™!) is 18—24 kJ/mol when A is split in the property
calculation (this difference is exactly canceled by the corre-
sponding EM — EP°! difference). As can be seen, the E™! energy
differs significantly between the various cutting schemes,
whereas the E°° energy is almost constant.

This discussion is quite general and applies for interaction
energies computed with any polarizable force field. To empha-
size this point, the corresponding values for the Amber 2002
polarizable force field>® are also given in Table 1. Interestingly,
the direct use of the E™! and EP°! terms, as obtained from the
AMBER program, gives the impression that the polarization is
negligible for this interaction (for some geometries, P actually
becomes positive). However, the polarizability energy depends
on details in the description of intramolecular polarization and
has no physical significance (for example, an internally induced
dipole that is subjected to an oppositely directed field from the
other monomer gives a positive contribution to the polarizability
energy). The true induction energy (E™) is attractive and
substantial.

Having introduced the direct terms, we note that there is
another useful interpretation of the PMISP energy. Inserting eq
3 into eq 2, applying eq 6, and reordering the terms gives

n n
BN =Y cEn+ BN - cEL] )
=1 =1
where we have used eq 4 together with the inherent pairwise
additivity of the multipole interactions to cancel the E™ terms.
Note that the cancelation only occurs if the same cutting scheme
is used for the calculation of the nonclassical term and the
properties. In eq 7, we recognize the first term as the pair-
wise additive (PA) interaction energy and the second term as
the many-body contribution to the polarizability energy. Thus,
one may regard the PMISP energy as an improvement of the
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Figure 3. Two-dimensional cartoon of the avidin model interacting with biotin (BTN1). It gives a guidance to the location of each fragment; in
reality, the fragments surround the ligand completely. For clarity, hydrogen atoms are omitted. The most prominent hydrogen bonds are indicated
by dotted lines. The fragments of the model (in cutting scheme b) are labeled from A; to A;s, and the additional fragmentation of As into fragments
As,—As, (in cutting scheme c) is also indicated. The avidin residue from which each fragment is derived is shown in brackets. The biotin molecule
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Figure 4. Schematic picture of the relations between classical
contributions to the interaction energy.

PA energy by approximating the many-body energy (which is
absent in PA) by the many-body energy from a polarizable
multipole description.

2.5. Computational Details. The multipoles and polariz-
abilities were obtained by the LoProp method*' as implemented
in MOLCAS.>*7¢ The default settings were used, except for
the largest clusters (with 216 atoms), for which we found that
the constant a in the penalty function for converting the charge
flow to polarizabilities (eq 17 in ref 41) had to be reduced from
7.1 to 2.0 to avoid numerical instability. For MP2, properties
were obtained by using the linear-response charge density.
Calculating this density is similar in effort to a gradient
evaluation, and thus takes significantly more time than an MP2
energy evaluation. For these calculations, the MOLPRO pro-
gram’’ was used to generate the density needed by LoProp.

The supermolecular calculations were also performed with
MOLCAS. The Cholesky decomposition (CD) approximation

TABLE 1: Electrostatic and Induction Energies for the
Model Complex in the Main Structure, Calculated by
PMISP with HF Properties Obtained by Cutting Schemes a,
b, and c, as well as by the Amber 2002 Force Field*

PMISP Amber
a b c ff02

Es% —419.4 —420.5 —419.1 —403.4
EM —164.6 —154.5 —153.4 —98.7
ERgt —419.4 —438.6 —442.7 —499.9
ER3 —164.6 —136.3 —129.8 2.2
ER! 0.0 —27.1 —-323 —169.9
ER! 0.0 0.0 0.0 —30.8
ERSL —164.6 —163.4 —162.1 —202.9

“ Various other quantities (cf., Figure 4) are also given. Energies
are in kJ/mol.

to the two-electron integrals®®> was applied in combination with

the local exchange (LK) algorithm.®® On the basis of a previous
analysis of the accuracy of the CD approximation,®~% a
decomposition threshold of 107* was used in all calculations.
The largest effect of the CD approximation was seen in the
calculations of E,, in which the error in the interaction energies
was up to 2 kJ/mol.

The comparison with other methods was done at the HF level
using cutting scheme b. The PA energy is the first term in eq 7
and is thus obtained as a part of the PMISP procedure. To obtain
the FMO and EE-PA energies, we used the FMO procedure in
the GAMESS program package® to calculate the total energy
of the AB dimer and monomer A, respectively, whereas the
energy of monomer B was obtained by a standard HF calcula-
tion. For FMO2, we used the very rigorous settings RESPAP
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= 0, RESPPC = 0, and RESDIM = 4.0, and for FMO3, we
additionally used RITRIM = 2.0. Tests performed for the main
structure showed that the more approximate settings suggested
in ref 19 (RESPPC = 2.0 and RESDIM = 2.0) could be used
without influencing the result with more than 0.1 kJ/mol.
However, applying the previously proposed RESPAP = 1.0
approximation changed the result by several kJ/mol. For the
EE-PA energy, we used RESPAP = 0, RESPPC = —1, and
RESDIM = 2.0. Thus, the only difference between FMO2 and
EE-PA was the use of the exact electrostatic potential in the
former and the potential from Mulliken charges in the latter,
independently of the distance.

3. Results

3.1. Demonstration of the PMISP Method. The PMISP
method was tested by performing calculations of the interaction
energy between a model of avidin (216 atoms, denoted A, see
Figure 3) and biotin-like ligands (12—41 atoms, denoted B, see
Figure 2), in various geometries. To enable a comparison with
the exact supermolecular results, the 6-31G* basis set was used.
Using this basis set, the supermolecular interaction energies for
the main structure are —252 kJ/mol at the HF level and —412
kJ/mol at the MP2 level. The BSSE is substantial, 105 and 214
kJ/mol, respectively, at the HF and MP2 levels. This indicates
that the supermolecular results are very far from the basis set
limit, but they still provide a reference for testing approximations
within the same basis set.

The difference between the MP2 and HF reference energies
is mainly due to dispersion, which is entirely missing in the
HF result, but included in the MP2 result. In fact, the dispersion
energy (at the MP2 level of theory) is even larger than the energy
difference suggests, because the electron correlation also affects
the electrostatic and induction energies, in this particular system
reducing the attraction by about 50 kJ/mol. For this reason, it
is advantageous to use the same level of theory in the
supermolecular calculations as in the calculation of properties.
Although we are mainly interested in the MP2 results, a separate
set of calculations is performed at the HF level. In addition to
enabling separate tests of the PMISP approximation at the HF
level and for the correlation contributions, the lower cost of
the HF property calculations allows us to investigate the
influence of the applied fragmentation scheme.

For the main structure, the classical energy is ~—570 kJ/
mol at the HF level (see Table 1) and ~—520 kJ/mol at the
MP?2 level (Table S1 in the Supporting Information). The large
attraction is partly canceled by the repulsive nonclassical term
(E™), being ~310 and ~100 kJ/mol at the HF and MP2 levels,
respectively, resulting in total PMISP energies within 10 kJ/
mol of the reference energies. The contribution from each
fragment to the nonclassical term for the main structure is
reported in Table 2. It can be seen that the contributions vary
substantially among the various fragments. This reflects the
difference in size as well as in overlap. With a few small-
magnitude exceptions, the fragment contributions at the HF level
are always positive, as can be expected because they contain
mainly exchange repulsion. The presence of negative terms is
a reminder of the approximations involved in the polarizable
multipole description of the interactions (e.g., neglect of charge-
penetration effects). At the MP2 level, the sign of each
contribution varies, because of the balance between exchange
repulsion and dispersion. For each fragment interaction, the
difference between the nonclassical terms at the MP2 and HF
levels is a good estimate of the dispersion energy.

3.2. Accuracy of the PMISP Method. To obtain statistics
regarding the accuracy of PMISP, we use 10 different geometries
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TABLE 2: Contributions to the Nonclassical Term from
Each Fragment for the Main Structure Using the PMISP
Method (with Cutting Scheme b) at the MP2 and HF Levels,
and the Embedded PMISP Method at the HF Level (EMB),
as well as the Mean Absolute Contributions to the Difference
between the Embedded and Standard PMISP Methods for
the Geometry Set (Gset) and Ligand Set (Lset) with the
Contributions from Polarizabilities within Brackets”

fragment MP2 HF EMB Gset Lset
Ay —-19 0.8 2.0 1.7 ©.5) 19 (04
A, —1.6 -0.1 —0.2 0.1 (0.1) 0.1 (0.1)
Aj 18.6 27.0 29.7 34 (04 33 (03
Ay 24.0 38.1 41.5 33 0.7 34 (0.7
As 11.0° 65.9 67.5 1.3 (0.5 09 (0.5)
Ag —6.2 26.4 242 1.3 (0.5 1.0 (0.2
Ay —-1.7 6.7 6.2 04 (0.2) 03 (0.1
Ag 59.8 72.4 74.5 32 (09 1.1 (0.3)
Ay —19 5.7 8.5 3.1 (06) 12 (0.2
Ao 16.2 27.8 28.4 06 (02) 03 (0.2
Ay —33 32 33 03 (0.1) 0.1 (0.0
A =72 8.5 8.0 0.6 (0.1) 03 (0.1)
Aj; =54 33 3.8 0.5 (03) 03 (0.1)
A 1.2 7.3 6.8 04 (03) 0.7 (0.3)
Ajs —0.9 19.9 18.7 09 (0.1) 0.7 (0.1

total 100.6 3129 3229 128 (19) 88 (1.2)

@ Energies are in kJ/mol. * Summed result using cutting scheme c.

TABLE 3: Mean Absolute Difference for the Geometry Set
(Gset) and Ligand Set (Lset) between Classical Energies
Calculated from Properties Obtained Fragment-wise
(Scheme b or c) and for the Whole Monomer A (Scheme a)*

scheme b scheme ¢
Gset Lset Gset Lset
ES 1.4 0.5 1.2 0.8
Eid 11.7 6.9 14.0 8.0
Eipdb 1.5 0.8 1.6 1.0

@ Energies are in kJ/mol. ? Using the same polarizability coupling
as in scheme a.

of the BTN interaction (geometry set), and seven different
ligands (Figure 2), each in a different geometry (ligand set). In
all of these calculations, the atoms in the avidin model remain
the same, but its geometry changes significantly. Detailed results
for all terms, all considered cutting schemes, and all geometries
are given as Supporting Information (Tables S1 and S2).

Let us first consider the influence of the fragmentation on
the computed properties and thereby on the classical energies.
Using the results with scheme a (i.e., obtaining the properties
in a single QM calculation) as the reference, the mean absolute
differences in electrostatic and induction energies for schemes
b and c are given in Table 3 for the geometry and ligand sets.
The results confirm that the three cutting schemes give almost
identical electrostatic energy, with mean absolute differences
of ~1 kJ/mol. This is a remarkably accuracy, considering that
the b and c calculations involve 15 and 25 fragments, respec-
tively, and that errors from each cut could accumulate.
Moreover, the electrostatic energy in schemes b and ¢ depends
not only on the multipoles, but also on the polarizabilities and
the definition of excluded multipoles, as discussed in section
2.4. The fact that the errors are not higher with scheme c than
with scheme b indicates that cutting a covalent bond does not
introduce a larger error than fragmenting across, for example,
a hydrogen bond. The explanation for this is probably that the
quantum-mechanical error of confining each wave function to
one fragment is to a large extent eliminated by the MFCC
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TABLE 4: Error As Compared To the Reference Energy
for the Main Structure, as well as the Mean Signed Error
(MSE), Standard Deviation (SD), and Mean Absolute Error
(MAE) for the Geometry and Ligand Sets”

geometry set ligand set
method main MSE SD MAE MSE SD MAE
HF Level
PMISP (ac) —19.6 —249 446 (249) —124 142 (12.5)
PMISP (bc) —10.6 —14.0 £34 (140) —55 £88 (7.3)
PMISP (cc) —8.1 —10.0 +25 (10.0) —37 462 (5.5)
PMISP (bb) —100 —109 427 (109) —40 +£69 (5.8
EMB-PMISP (bb) 0.2 20 £26 (2.6) 50 £28 (5.0
PA (b) —22.8 —283 £7.0 (283) —69 £232 (194
FMO?2 (b) 9.7 13.6 £23 (13.6) 6.4 £33  (6.4)
EE-PA (b) 120 156 £22 (15.6) 80 £32 (8.0
MP2 Level
PMISP (cc) —67 —9.0 £33 (9.0) —12 +84 (6.9
PMISP-CE (cc) 15 1.0 £1.0 (1.2) 26 £26 (33)

“Results for several methods are given. The letters in brackets
indicate the cutting scheme used for the classical (E, E™) and
nonclassical (E"™) terms, respectively (if no such decomposition is
used, only one letter is given). Energies are in kJ/mol.

procedure, so that the remaining error comes from imperfect
description of the polarization, which is prominent in hydrogen
bonds.

The situation is slightly different for the induction energy.
Although the difference between schemes b and c is rather small,
both results deviate significantly from scheme a with mean
absolute differences of 7—14 kJ/mol. However, this discrepancy
is not necessarily an error introduced by fragmentation of
monomer A, but the reason could also be that the intramolecular
polarizability coupling within a fragment is only treated
implicitly, and the error of this approximation is expected to
be largest for scheme a. The magnitude of this effect can be
tested by using properties derived by scheme b or ¢, but ignoring
the polarizability coupling within monomer A, as in scheme a.
The static polarization within monomer A, on the other hand,
is kept because that part is exactly modeled (by QM) in scheme
a. As can be seen in Table 3, with this treatment of intramo-
lecular polarization, the differences in induction energies are
similar to those in electrostatic energies, that is, negligible for
all practical purposes.

The total PMISP energy is an approximation to the super-
molecular interaction energy (E.). The error of this approxima-
tion for the main structure, as well as the mean signed errors,
mean absolute errors, and standard deviations for the geometry
and ligand sets, are reported in Table 4. Because of the choice
of cutting schemes for the individual terms, several combinations
are computed, labeled by two letters, indicating the cutting
scheme used for the computation of the classical terms (E°*°
and £™) and nonclassical term (E™), respectively. For compu-
tational reasons, the cc combination is most interesting, but
within HF theory, we also test the use of larger fragments for
the property calculations (ac and bc combinations), as well as
the more consistent bb combination to investigate possible error
cancelation.

If we fix scheme c for the nonclassical term and vary the
scheme for the classical terms, we see that the MAEs become
lower as the fragments are made smaller. Using the full
monomer A to compute the properties (ac) gives a MAE of 25
kJ/mol for the geometry set. Using the separate molecules (bc)
reduces the MAE to 14 kJ/mol, and cutting As into fragments
(cc) reduces the MAE even more to 10 kJ/mol. As we have
already showed that the discrepancy in classical energy between
the cutting schemes primarily reflects the differing treatment
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of intramolecular polarizability coupling, these results indicate
that it is a severe approximation to rely on the implicit coupling
in large molecules (as in scheme a).

The bb combination gives approximately the same MAE as
the cc combination (i.e., lower than the bc combination). This
is not a coincidence. A closer examination of the energies shows
that the mean absolute difference between the two estimates is
only 1 kJ/mol (maximum difference 2 kJ/mol), which is less
than the differences in the individual terms. Thus, a systematic
error cancelation occurs when using the same cutting scheme
for all terms (note that this cancelation also includes the
treatment of polarizability coupling). We cannot directly
conclude which of the schemes bb and cc is the best one, but
for practical reasons we prefer the more efficient approach (cc).

The errors are similar at the MP2 level. This might be
expected, because the dispersion energy included in MP2 is
pairwise additive (assuming that the molecular orbitals are
localized on the fragments). However, it indicates that other
types of correlation effects do not make significant contributions
to the nonadditivity. This immediately suggests a MP2—HF
hybrid method for estimating MP2 interaction energies, by the
expression

JPMISP-CE _ Eg _ EPMISPHF | pPMISPMP2 (8)
In analogy with earlier notation,* we call this approach PMISP-
CE (where CE stands for correlation energy), and its errors are
also reported in Table 4. With mean absolute errors of only
1—3 kJ/mol (with a maximum of 6 kJ/mol for BTN4), it appears
to be an excellent approximation, useful in cases where the HF
energy (but not the MP2 energy) can be obtained in a
supermolecular calculation. The method differs from the previ-
ously proposed PA-CE method** by a term describing the change
of the many-body polarization when correlation is included. As
this term has an average magnitude of only 1 kJ/mol, the simpler
PA-CE method is preferred, because no property calculations
are needed.

3.3. Analysis of the Error. Having shown that the error of
PMISP (i.e., the part of the many-body effects that cannot be
captured by our classical model) is rather independent of the
fragmentation scheme and already present at the HF level, it
remains to discuss the origin of this effect. To this end, we
restrict ourselves to the HF case using cutting scheme b, and
follow three paths. First, we try to improve the PMISP method
by understanding what physical effects are missing. Second,
we compare our result with the corresponding result using other
methods, which employ different sets of approximations. Third,
we apply a brute force solution to the problem, which also gives
useful insights into what effects are important.

The negative mean signed errors in Table 4 reflect that, for
the negatively charged ligands, the attraction is systematically
overestimated (i.e., the interaction energy is too negative) by
the PMISP method. By our definition, this means that the sum
of fragment-wise nonclassical terms is lower than the nonclas-
sical term of the whole complex. Such nonadditivity of the
nonclassical term can have several physical origins. First, the
exchange-repulsion energy can be nonadditive.*+®° Second, the
surrounding molecules can influence the exchange repulsion of
a given dimer by polarizing the dimer wave function in a way
that increases the repulsion; that is, the coupling between
exchange and induction can be nonadditive. Third, the polariza-
tion model can be inadequate, so that the nonclassical term does
not represent the quantity that we would expect to be additive.
Typically, the classical calculations tend to give a slight
overpolarization,* and the sign of the PMISP error would then
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indicate that this overpolarization is more prominent in the whole
dimer than in the fragment interactions.

Although these effects can in principle be quantified by
symmetry-adapted perturbation theory,’*% we take a more
pragmatic approach. To test whether the effect of polarization
from surrounding molecules on the individual EXg terms is
significant, we define a new method, denoted embedded PMISP
(EMB-PMISP), in which eq 3 is replaced by

n
Eg =" (ExpA) — Exp(A) — Exp(d))  9)
=1

In this expression, a noncovalent cutting scheme (i.e., all ¢;
= 1) is assumed, and (A;) denotes that the calculation is done
in the presence of all fragments A; satisfying j = i. To avoid
double-counting of energy contributions, it is important that A;
is “pre-polarized” without including internal energy terms.

The results for the EMB-PMISP method are shown in Table
4. For all of the charged ligands, the embedding gives a
significant improvement. This suggests that the polarization
model and its neglected coupling to exchange repulsion are the
most probable sources of error and, more importantly, gives a
practical method to reduce the problem. However, the effect of
embedding is slightly overestimated, and for the neutral ligands
the embedding actually shifts the energy away from the
reference. Although more statistics is needed to exclude the
possibility of a lost error cancelation, this indicates that, in
addition, the effect of the Pauli exclusion principle from the
surrounding molecules needs to be taken into account. Such
approach would avoid possible overpolarization in the embedded
calculations and also capture nonadditive effects in the exchange
repulsion.

By repeating the embedded calculations without polarizabili-
ties, we note that most of the effect of embedding (in average
~9 kJ/mol) comes from the multipoles, whereas only a small
part (in average ~2 kJ/mol) comes from the polarizabilities.
The average embedding contributions from each fragment are
listed in Table 2. The largest contributions (~3 kJ/mol) come
from Ajz, A4, Ag, and Ay, although the latter two give large
contributions only for the ligands with a carboxylate group. The
total effect of embedding is positive for all considered structures,
but the sign of each contribution varies. Thus, in cases where
cancelation is less prominent, the effect of embedding may be
larger.

To continue the analysis, we also give the results using some
other fragmentation methods in Table 4. The pairwise additive
(PA) method, in which the supermolecular interaction energies
are simply summed, gives significantly worse results (MAEs
28 and 19 kJ/mol for the geometry and ligand sets, respectively).
This shows that inclusion of many-body effects is important.
We tested two other methods that include many-body contribu-
tions: the EE-PA!7 and FMO2° methods. Both use embedding
to model the surrounding molecules, but in contrast to EMB-
PMISP, the embedding is used to calculate all interaction terms,
that is, not only the nonclassical term. Thus, no classical
calculations are needed, but instead calculations have to be done
at both the embedded monomer and the embedded dimer level.
At the monomer level, an iterative procedure is performed to
ensure a self-consistent treatment of polarization (in the original
EE-PA method, this iterative scheme is omitted).

The difference between the EE-PA and FMO2 methods is
the type of embedding employed. In the EE-PA method, each
surrounding molecule is modeled by a point-charge representa-
tion (obtained through a Mulliken analysis®® of the wave
function), whereas in the FMO2 method, the exact electric field
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Figure 5. Correlation between the supermolecular (HF) interaction
energies and the energies estimated by various methods. Note that the
axes are broken to accommodate the results of both the charged and
the neutral ligands. The line represents perfect correlation.

from the charge density is used (except for approximations in
the long-range interactions that were shown not to influence
the result). A drawback with the current implementation of the
EE-PA and FMO2 methods is that there is no method to correct
for BSSE. Therefore, to enable comparison with the PMISP
results, the results are shifted by the sum of the counterpoise
corrections for each dimer calculation. This procedure is exact
for the PA method, but only approximate for the EE-PA and
FMO2 methods. Therefore, the uncorrected results are given
in the Supporting Information (Tables S1 and S2), together with
the uncorrected reference energies. For the FMO3 method, only
uncorrected energies are computed. All (counterpoise-corrected)
methods are compared in Figure 5.

Regardless of whether the approximate BSSE-correction is
applied or not, the results with the EE-PA and FMO2 methods
are worse than those obtained by the PMISP method. This is
surprising, considering the presumably better treatment of the
coupling between induction and repulsion in the former two.
Note that, unlike the PMISP method, the accuracy of EE-PA
and FMO necessarily increases with the size of the fragments;
thus, the restriction to cutting scheme b does not favor the
PMISP method. It is also interesting that the FMO2 method is
not significantly better than the EE-PA method, despite that the
latter uses a rather crude approximation to the electric potential
from the surrounding molecules.

A plausible explanation of these observations is that including
the electrostatic effects from the surrounding (either exactly or
approximately) without including the effects of the Pauli
exclusion principle may introduce an inconsistency that is more
severe than the actual approximation of the potential.*® This
has been noted before and is one of the reasons why FMO does
not work for diffuse basis sets.” Clearly, such inconsistency is
also introduced in the embedded PMISP method, but in that
case, it enters only in a correction to the nonclassical energy,
that is, not in the computation of the main part of the many-
body effect. The main part is computed using a polarizability
model, whose neglect of the local inhomogeneity of the electric
field usually cancels the lack of Pauli effects.*

The three-body FMO method (FMO3) is expected to reduce
the inconsistency problem, because it corrects the embedded
polarization by performing supermolecular calculations (which
include Pauli effects) for all trimers. The trimer correction
reduces the error dramatically so that essentially exact results
are obtained (MAEs 1 kJ/mol for both the geometry and the
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TABLE 5: Trimer Results for the Main Structure®
X-Y dist (A) ~ E3  Epo3 g3 — ol EMO3

As—As 1.9 —86 35 —5.1 2.0
Ag—Ao 23 9.1 4.7 4.5 1.3
As—Ayg 4.8 11.2 6.9 4.3 0.3
As—Ay 24 40 —03 43 1.8
As—Ag 2.6 16.2 12.6 3.6 0.6
Ag—Aog 2.5 —-53 —3.1 —23 0.3
A—A; 2.0 34 1.1 23 0.9
Ai—Ay 2.7 1.8 0.5 1.2 0.6
As—Ap 5.0 —2.5 —-1.7 —0.8 —0.1
As—Ajs 2.5 —0.5 0.3 —0.8 0.5
Ap—Ay 22 1.6 0.8 0.8 0.5
As—Ag 2.5 -19 -1.3 —0.6 0.4
As—A; 2.5 1.8 2.4 —0.6 0.2
Ap—An 2.1 1.3 0.8 0.5 0.9
sum 25.4 9.9 15.3
error 2.7 —0.2 0.4

“Only fragment pairs X—Y that contribute more than 0.5 kJ/mol
to eq 10 are listed, but the sum contains all contributions. Dist is
the closest distance between any atom in X and any atom in Y. The
error is given relative to the reference energy (not count-
erpoise-corrected in the FMO case) after addition of the
corresponding two-body quantity (PA, PMISP, and FMO?2,
respectively). Energies are in kJ/mol.

ligand sets). However, the computational cost is several times
higher; in fact, the FMO3 calculation takes much longer time
than the exact supermolecular calculation (although this will
of course not be true with a larger basis set).

Because of the excellent performance of FMO3, it is evident
that the trimer correction terms indicate where the error in the
FMO?2 method arises. Likewise, trimer corrections to PMISP
would give the corresponding information about the PMISP
error. Therefore, we define the three-body PMISP method as

n
PMISP3 _ ~-PMISP sup __pSup __ psup]
E =E + z ([E[A/.Aj]B EAiB EAjB

i<y
pol _ gpol __ ppol
[E[AiAjJB AB AB ) (10)

where the expression in the first bracket (denoted E*“P3) is
the three-body contribution to the supermolecular interaction
energy between the A;A; pair and B, and the expression in
the second bracket (denoted EP°") is the corresponding three-
body contribution to the polarizability energy. Note that the
three-body multipole energy vanishes because of the addi-
tivity of multipole interactions (cf., eq 7). The largest trimer
contributions to eq 10 for the main structure are listed in
Table 5. With only three exceptions, the EP°S term for a given
trimer has the same sign as the corresponding E**P* term but
is smaller in magnitude. Thus, the many-body classical
polarization, through which PMISP approximates the total
many-body effects, contains qualitatively the correct effect,
but systematically underestimates it for each trimer. This
observation provides a perfect test case for future improve-
ment of the description of polarization (e.g., by including
explicit coupling to the repulsion).

The difference between E**P* and EP°B, which is the contribu-
tion to PMISP3 for a given trimer, is at most 5 kJ/mol. The
detailed results give the same picture as those using the
embedded PMISP method: The fragments that contributed most
to the embedded correction are in general those present in the
most important trimers. However, the trimer results give more

J. Phys. Chem. A, Vol. 113, No. 3, 2009 625

detailed information. For example, it can be seen that the rather
small embedded correction for As is a result of cancelation of
its interactions with As (=5), Ag (+4), Ag (+4), and others.
Moreover, a geometrical analysis of the results (see Table 5)
shows that all fragment pairs that give large contributions (> 1
kJ/mol) are directly interacting except for the As—Aq pair, which
is linked by the carboxylate group of B.

For comparison, the corresponding contributions to FMO3
are also reported in Table 5. Interestingly, they seem to be
completely uncorrelated to the PMISP3 contributions. In
contrast to the latter, the FMO3 contributions are almost
consistently positive. Therefore, they add up to a larger sum
than the PMISP3 contributions, despite that the individual
contributions are in general smaller in magnitude. Thus, the
lower error for PMISP than for FMO?2 is partially caused by
error cancelation. However, the fact that this cancelation
occurs in all considered systems suggests that it is in fact
advantageous to have a more random error (as in PMISP) as
compared to a systematic error (as in FMOQO2). It is also
interesting to note that the FMO3 contributions are even more
strongly related to the distance: only neighboring pairs give
any significant contribution. This indicates that the neglect
of Pauli effects (which are of course very short-ranged) is
the dominant approximation in FMO?2.

Finally, it can be noted that, just as the FMO3 method, the
PMISP3 method gives essentially the exact result. Thus, it may
be a useful method when one needs very high accuracy and
can afford the increased computational cost. Moreover, because
of the geometrical dependence, it may be possible to select the
important trimers a priori. The extension to cutting covalent
bonds is straightforward with the MFCC approach. The simple
three-body expansion (i.e., PA extended with three-body terms)
gives an error of 3 kJ/mol, indicating that higher-order many-
body effects are rather small for this system.

4. Conclusions

We have developed and tested a computationally efficient
method (PMISP) to estimate the quantum-mechanical interaction
energy between a large and a small molecule in vacuum. The
method, which is based on a polarizable multipole description
supplemented by a set of supermolecular calculations, can be
used for benchmarking simpler potentials, but also applied
directly in the calculation of interaction energies.

Tests on model complexes with ~250 atoms using HF theory
show that, for charged ligands, the error of the PMISP model
is ~10 kJ/mol, whereas the corresponding error of the pairwise
additive (PA) model is ~30 kJ/mol. For the neutral ligands,
the corresponding errors are significantly lower, but show the
same trend, being ~2 and ~10 kJ/mol, respectively. Thus,
inclusion of polarization improves the performance of the
potential by a factor 3—5, using a consistent treatment of the
remaining terms. The reason why such large effects of polariza-
tion are seldom reported in other published tests of force fields
is probably that these errors are hidden behind the large
parametrization errors.

The error from calculating multipoles and polarizabilities by
the MFCC fragmentation procedure is negligible (within 1 kJ/
mol). Thus, the only way to systematically obtain more accurate
results is by improving the modeling of many-body effects, in
particular by including coupling between polarization and
repulsion. However, our test indicates that two of the previously
proposed methods that include this coupling, FMO and EE-
PA, do not give better results; in fact, they give slightly larger
errors than PMISP to a higher computational cost. Although
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our attempt to include embedding in the PMISP method does
indeed decrease the error for charged ligands, this is still an
area where more development is needed.

When going from the HF to the MP2 level, the PMISP error
increases slightly for the neutral ligands (to ~5 kJ/mol) but not
for the charged ligands. This indicates that the correlation effects
on the nonclassical energy are nearly pairwise additive. Of
course, many-body contributions to the dispersion are not
captured by the MP2 method, so these may still be significant.
The dispersion part of interaction energies is known to converge
very slowly with basis set. Therefore, to obtain quantitative
results, a large basis set including diffuse functions must be
used; the modest 6-31G* basis set was used in this study only
to enable an exact reference calculation.

The obtained errors have important consequences for force-
field development in general. Assuming that the nonadditivity
of intermolecular interactions is only modeled by a classical
polarization term (as in all current general-purpose force
fields that consider the nonadditivity at all), the PMISP
method can be considered as a perfectly fitted polarizable
force field. Thus, without introducing new physical principles
for modeling nonadditivity,®® this is the best accuracy one
can ever expect from a polarizable force field for this type
of problem. Similarly, the PA model uses exact pair
potentials, so its accuracy provides a corresponding limit for
nonpolarizable force fields.

The PMISP method does not put any restriction on the
size of the large molecule, and the size of the small molecule
is only limited by the applied QM method. Thus, the method
can in principle be used for a full protein—ligand complex.
However, the method, as presented here, wastes computa-
tional power by treating residues far from the ligand in the
same way as the nearest ones. In a future publication, we
will show how the method can be adapted for this type of
application.
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